Skip to main content

Comparing RAG and Fine-Tuning-Which Is Better?

· 7 min read
rag

Introduction:

Large Language Models (LLMs) have become potent instruments in the quickly developing field of artificial intelligence, able to produce text that is both coherent and contextually relevant. These models are trained on large and varied datasets and use the transformer architecture to take advantage of the attention mechanism to capture long-range dependencies.

They acquire emergent features from this training, which helps them excel in a variety of language-related tasks. Pre-trained LLMs perform well in general applications, but they frequently perform poorly in specialized fields like law, finance, or medicine where accurate, subject-specific expertise is essential.

To overcome these drawbacks and improve the usefulness of LLMs in specialized domains, two main approaches are utilized: retrieval-augmented generation (RAG) and fine-tuning.

Constraints with Pre-trained LLMs

LLMs have drawbacks such generating biased or erroneous information, having trouble answering complex or nuanced questions, and perpetuating prejudices in society. They also depend significantly on the caliber of input prompts and present privacy and security hazards. For increased reliability, these problems call for strategies like retrieval-augmented generation (RAG) and fine-tuning. This blog will examine RAG and fine-tuning and when each is appropriate for an LLM.

Types of Fine-Tuning

1. Knowledge Inclusion

Using tailored language, this strategy incorporates domain-specific knowledge into the LLM. Training an LLM with textbooks and medical periodicals, for instance, can improve its capacity to produce pertinent and accurate medical information. Similarly, training with books on technical analysis and finance can help an LLM create responses that are specific to their field. By doing this, the model's understanding domain is expanded, making it capable of producing replies that are more accurate and suitable for the given context.

2. Response Tailored to the Task

Using question-and-answer pairs, this method trains the LLM to customize its responses for particular tasks. An LLM can be made to produce responses that are more matched to customer service requirements by adjusting it through customer support interactions. The model gains the ability to comprehend and react to certain inquiries through the use of Q&A pairs, which enhances its usefulness for focused applications.

For LLMs, what is the use of retrieval-augmented generation (RAG)?

By merging text generation and information retrieval, retrieval-augmented generation (RAG) improves LLM performance. In response to a query, RAG models dynamically retrieve pertinent documents from a vast corpus using semantic search, including this information into the generative process. Because of this method's ability to provide solutions that are accurate in context and enhanced with exact, current information, RAG is especially useful in fields like customer service, legal, and finance.

Comparison of RAG and Fine-Tuning Requirements

1. Data

Fine-Tuning: It is necessary to have a well-curated, extensive dataset that is unique to the target domain or task. Labeled data is required for supervised fine-tuning, particularly for Q&A functions.

RAG: For efficient document retrieval, access to a vast and varied corpus is necessary. Pre-labeling of data is not necessary because RAG makes use of already-existing information sources.

2. Compute

Fine-tuning: Retraining the model on the new dataset makes this process resource-intensive. needs a lot of processing resources, such as GPUs or TPUs, in order to train well. Nevertheless, we can significantly lower it with Parameter Efficient Fine-tuning (PEFT).

RAG: Needs effective retrieval mechanisms but is less resource-intensive in training. requires computing power for tasks related to both creation and retrieval, though not as much as model retraining

3. Technical Proficiency

Large language model fine tuning demands a high level of technical proficiency. Complex activities include creating fine-tuning objectives, supervising the fine-tuning process, and preparing and curating high-quality training datasets. need proficiency managing infrastructure as well.

Moderate to advanced technical proficiency is required for RAG. It can be difficult to set up retrieval systems, integrate with outside data sources, and guarantee data freshness. Technical expertise is also required for managing large-scale databases and creating effective retrieval algorithms.

Comparative Evaluation: RAG and Fine-Tuning

1. Static vs Dynamic Data

Static datasets that have been created and vetted prior to training are necessary for fine-tuning. Since the model's knowledge stays stable until it goes through another cycle of refinement, it is perfect for domains like historical data or accepted scientific knowledge where information is not constantly changing.

RAG accesses and integrates dynamic data by utilizing real-time information retrieval. Because of this, the model can respond with the most recent information based on quickly changing domains such as finance, news, or real-time customer support.

2. Hallucination

By focusing on domain-specific data, fine-tuning can help decrease some hallucinations. However, if the training data is biased or small, the model may still produce plausible but false information. By obtaining genuine information from trustworthy sources, RAG can dramatically lower the frequency of hallucinations. But in order to effectively reduce hallucinations, the system needs to access reliable and pertinent sources, thus making sure the documents it retrieves are accurate and of high quality is essential.

3. Customization of Models

With fine-tuning, the behavior of the model and its weights can be deeply customized based on the unique training data, producing outputs that are extremely customized for specific tasks or domains. RAG customizes without changing the fundamental modelers; instead, it does so by choosing and retrieving pertinent documents. With this method, there is more flexibility and it is simpler to adjust to new knowledge without requiring significant retraining.

Use Case Examples for RAG and Fine-Tuning

Medical Diagnostics and Recommendations

For applications in the medical industry, where precision and following established protocols are essential, fine-tuning is frequently more appropriate. By enhancing an LLM with carefully chosen clinical guidelines, research papers, and medical books, one may make sure the model offers accurate and situation-specific guidance. Nonetheless, including RAG might help you stay current on medical advancements and research. RAG can retrieve the most recent research and advancements, guaranteeing that the guidance is up to date and based on the most recent discoveries. For foundational information, fine-tuning and RAG for dynamic updates may therefore work best together.

Client Assistance

In the context of customer service, RAG is especially useful. Since customer inquiries are dynamic and solutions must be current, RAG is the best method for quickly locating pertinent documents and data. To deliver precise and prompt advice, a customer care bot that utilizes RAG, for example, can access a vast knowledge base, product manuals, and the most recent upgrades. Additionally, fine-tuning can customize the bot's reaction to the company's specifications and typical customer problems. RAG makes sure that responses are up to date and thorough, while fine-tuning guarantees consistency and relevancy.

Conducting Legal Research and Preparing Documents

Fine-tuning an extensive dataset of case law, laws, and legal literature is crucial in legal applications, where accuracy and conformity to legal precedents are critical. This guarantees that the model delivers precise and pertinent legal data for the given scenario. New case laws may also arise, and laws and regulations may alter. RAG can help in this situation by obtaining the most recent court cases and legal documentation. This combination makes it possible to provide legal practitioners with a highly effective legal research tool that is both extremely educated and current.

Conclusion:

The requirements of the application will determine whether to use RAG, fine-tune, or a combination of the two. In many situations, RAG delivers dynamic, real-time information retrieval, while fine-tuning offers a strong foundation of domain-specific knowledge.

navan.ai has a no-code platform - nstudio.navan.ai where users can build computer vision models within minutes without any coding. Developers can sign up for free on nstudio.navan.ai

Want to add Vision AI machine vision to your business? Reach us on https://navan.ai/contact-us for a free consultation.